
ECS 189A Sublinear Algorithms for Big Data Fall 2024

Lecture 17: Count-Min Sketch & Count Sketch

Lecturer: Jasper Lee Scribe: Xiaohang Cheng

1 Streaming Definition Review

Each stream token pair (j, c) denotes that we intend to increment the frequency of domain
element fj by the count c. Let f be the frequency vector over universe [n] and assume
|fj | ≤ m space (analogous to “stream length” bounded by m).

Models:

• “Cash register”: c > 0

• “Turnstile”: unrestricted c (some of the frequencies can be negative)

Today’s Problem: Estimate fj . Related to finding “heavy hitters” or frequent elements
in the stream. The details are left as an exercise to the readers. (HW7 Problem 6)

Today’s Algorithm:

Count-Min Sketch

• Works for the “Cash Register model”

• Weaker approximation guarantee

• Lower Space Usage

Count Sketch

• Works for the “Turnstile model”

• Stronger approximation guarantee

• Higher Space Usage

2 Count-Min Sketch

Algorithm 17.1

1. C[1, · · · , t][1, · · · , k]← 0; k = 2
ε , t = log2

1
δ

2. Sample t i.i.d. functions h1, · · · , ht : [n]→ [k] from a 2-wise independent hash family.

3. Repeat for each token (j, c):

for each i = 1 to t:

C[i][hi(j)] += c;

4. Query f̂j , return miniC[i][hi(j)].

Note that the space usage of the 2-D array C is O
(
1
ε (log 1

δ)(logm)
)
. Because the dimension

of C is t× k. We also assume that each fj is bounded by m, which needs logm bits. The

1

space usage of the hash functions h1, · · · , ht is O
(
log 1

δ · (log n+ log 1
ε)
)
. Because there

are t many of them. Assume each of them is from a 2-wise independent hash family from
[n]→ [k]. Therefore, it requires max{log n, log 1

ε} or simply O(log n+log 1
ε) space. Thus, the

total space usage is O
(
log 1

δ (1ε (logm) + log n)
)
. Note that the log 1

ε term can be dismissed
since other terms will be dominant in the product due to 1

ε � log 1
ε and logm > 1.

Intuition for the Algorithm:
Consider a t×k matrix. We have t copies of sketches. For each sketch, draw a hash function
randomly from the hash family and get its j-th entry. Then, retrieve this particular element
as the count.

Observation:
If c > 0 the “Cash Register” model, for every i ∈ [t], C[i][hi(j)] ≥ fj .
As we can see, we can only overcount due to possible collisions. Therefore, it makes sense to
take the minimum of all counts, and we attempt to bound the probability that the minimum
overcounts (possibly by a lot).

Theorem 17.2. Consider an arbitrary stream in the “Cash Register” model and an ar-
bitrary j ∈ [n] query made at the end. Run Algorithm 17.1 w.p. ≥ 1 − δ, we have
fj ≤ f̂k ≤ fj + ε‖f−j‖1, where f−j(dimension n− 1) is f dropping the j-th coordinate.

Proof. Consider the event that the i-th hash function makes a and j collide. Denote this
event by the indicator variable Yia = 1{hi(a)=hi(j)}. Let the error of C[i][hi(j)] for fj be
Xi =

∑
a6=j

fa · Yia.

We first analyze the expectation of Xi. By linearity,

E(Xi) =
∑
a6=j

fa · E(Yia)

Note that E(Yia) is the probability of the i-th hash function make a and j collide. By the
universality of hash family (Lecture 16), we have E(Yia) ≤ 1

k . Therefore, we have∑
a6=j

fa · E(Yia) ≤
∑
a6=j

fa
k

=
‖f−j‖1
k

=
ε‖f−j‖1

2

By Markov’s Inequality, we get

P(Xi ≥ ε‖f−j‖1) ≤
E(Xi)

ε‖f−j‖1
≤ 1

2

Observe that if f̂j is large, then C[i][hi(j)] is large for all i. Therefore,

P
(
f̂j = min

i
C[i][hi(j)] ≥ fj + ε‖f−j‖1

)
= P

(
min
i
Xi ≥ ε‖f−j‖1

)
= P

(
∀i,Xi ≥ ε‖f−j‖1

)
≤ 1

2t

= δ

2

One can also do a Count-median sketch by replacing min in the query with median
operation for “Turnstile” streaming model with the same guarantee except for the lower
bound. The analysis is left as an exercise to the readers.

3 Count Sketch

In this section, we will stick with a constant success probability 2
3 for each fixed query. The

success probability can actually be boosted to 1 − δ. The analysis is left as an exercise to
the readers. (HW7 Problem 1(b))

Algorithm 17.3

1. C[1, · · · , k]← 0; k = 3
ε2

2. Sample t i.i.d. functions h1, · · · , ht : [n]→ [k] from a 2-wise independent hash family.

3. Choose a random g : [n]→ {±1} from a 2-wise independent hash family.

4. Repeat for each token (j, c) :

C[h(j)] += c · g(j);

5. Query j, return f̂j = C[h(j)] · g(j).

Now we analyze the space usage. Since the dimension of the array C is k, it requires
O(1

ε2
logm) space. The space usage of the hash functions is O(log n + log 1

ε) for a similar
argument of the space usage of the Count-min Sketch algorithm. Therefore, the total space
usage is O(1

ε2
logm + log n) for a constant probability of success. If we want to boost it

to 1 − δ, it requires O(log 1
δ) multiplicative overhead in space and time complexity. The

analysis is left as an exercise to the readers. (HW7 Problem 1(b))

Theorem 17.4. Consider an arbitrary stream in the “Turnstile” model and an arbitrary
j ∈ [n] query made at the end. Run Algorithm 17.3 w.p. ≥ 1−δ, we have |f̂j−fj | ≤ ε‖f−j‖2,
where f−j(dimension n− 1) is f dropping the j-th coordinate.

Proof. Consider the event that the i-th hash function makes a and j collide. Denote this
event by the indicator variable Ya = 1{h(a)=h(j)}. Let f̂j = g(j) ·C[h(j)] = g(j) ·

∑
a
fag(a)Ya,

where fa is the frequency of a and g(a) is a random sign. Pulling out the case where i = j,
we have ∑

a

fag(a)Ya = fj +
∑
a6=j

fag(j)g(a)Ya

We first analyze the expectation of f̂j . We have

E(f̂j) = fj +
∑
a6=j

faE [g(j)g(a)Ya]

Since g and h are independent,

E [g(j)g(a)Ya] = E [g(j)g(a)]E(Ya)

3

Since g is drawn from a 2-wise independent hash family,

= E[g(j)]︸ ︷︷ ︸
0

E[g(a)]︸ ︷︷ ︸
0

E(Ya)

= 0

Therefore, we have E(f̂j) = fj .

Next, we analyze the variance of f̂j . By definition,

Var(f̂j) = E[(f̂j − E(f̂j)
2] = E[(f̂j − fj)2] = E

∑
a6=j

faHHHg(j)g(a)Ya

2

= E

∑
a6=j

f2a
HHHg2(a)Y 2

a +
∑
a6=b
a6=j
b 6=j

fafbg(a)g(b)YaYb

Note that E(Ya) ≤ 1

k and E[g(a)g(b)YaYb] = E[g(a)]E[g(b)]︸ ︷︷ ︸
0

E[YaYb] = 0.

Therefore,

Var(f̂j) ≤
1

k
·
∑
a6=j

f2a =
‖f−j‖22
k

Finally, by Chebyshev’s inequality,

P
(
|f̂j − fj | ≥ ε‖f−j‖2

)
≤ Var(f̂j)

ε2‖f−j‖2
≤ 1

3

Remark: For all x ∈ Rn, we have ‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2.

Proof.

‖x‖2 =

√√√√ n∑
i=1

|xi|2 ≤
n∑
i=1

√
|xi|2 =

n∑
i=1

|xi| = ‖x‖1

The other inequality is left as an exercise to the readers. As a result, the Count Sketch
gives us a better guarantee than Count-Min Sketch.

4

	Streaming Definition Review
	Count-Min Sketch
	Count Sketch

